This study investigates the application of Ordinary Stone Columns (OSCs) and Geogrid-Encased Stone Columns (GESCs) in enhancing the properties of soft clay soils through numerical analysis using PLAXIS 3D (version 2024). The study contrasts numerical findings with two well-researched field case studies: one in Korea and one in Iraq. The analyses were calibrated using the Mohr-Coulomb and Hardening Soil models, and settlement responses were assessed for different reinforcement scenarios, including untreated soil, OSCs, and GESCs. The results show a strong match between PLAXIS 3D simulations and field measurements, confirming the method's reliability. In the floating case (in Iraq), OSCs increased load-bearing capacity by about 21%, while GESCs improved it by around 30% compared to untreated soft clay. For the end-bearing case (in Korea), even greater enhancements were recorded, with OSCs increasing the bearing capacity by nearly doubling it and GESCs by almost 2.5 times compared to untreated soil. Geogrid encasement is presented as significantly improving settlement control and bearing capacity, with PLAXIS 3D proving to be an important design aid in geoground improvement systems.