Cover
Vol. 1 No. 1 (2025)

Published: December 14, 2025

Pages: 14-20

Research Article

A Comprehensive Review of Column-Based Ground Improvement Techniques: Mechanisms, Design, and Field Applications

Abstract

This paper offers a comprehensive review of column-based ground improvement techniques, focusing on their fundamental mechanisms, design principles, construction methods, and field applications. It highlights stone columns and deep soil mixing (DSM) as the most widely used and effective solutions for enhancing the performance of weak and compressible soils. The core principles, including stress redistribution, increased shear strength, and accelerated consolidation, are discussed in detail. The review synthesizes key design parameters such as column geometry, area replacement ratio, and the role of geosynthetic reinforcement and load transfer platforms. It also examines the practical application of these methods through various case studies on embankments, tank foundations, and excavation supports. A dedicated section explores the pivotal role of numerical modeling, especially the finite element method (FEM), and emerging AI-driven approaches like Physics-Informed Neural Networks (PINNs) and surrogate modeling, which are shown to improve predictive accuracy and optimize the design process. Furthermore, the paper addresses critical challenges and limitations, including material variability, installation uncertainties, environmental impacts, and the need for enhanced quality control and long-term monitoring. It concludes by outlining future trends and innovations, such as the adoption of sustainable materials and the integration of machine learning for predictive design and real-time monitoring. This synthesis provides a structured overview of current best practices and offers valuable insights into the future direction of this vital area of geotechnical engineering.

References

  1. Kumar, M., & Kumar, R. (2023). A review of stone columns performance in soft soils. ResearchGate. https://www.researchgate.net/publication/370748758_A_review_of_stone_columns_performance_in_soft_soils.
  2. Basack, S., Dey, S., & Roy, S. (2023). Numerical modeling of stone columns validated with field data. Sustainability, 15(9), 7457. https://doi.org/10.3390/su15097457.
  3. Abas, A., Al-Kutbe, A. A., & Al-Amir, A. (2024). Performance of vibro-replacement stone columns in sabkha soils for tower foundations. Innovative Infrastructure Solutions. https://doi.org/10.1007/s43995-023-00042-0.
  4. Ghazavi, M., Keshtkar, N., & Khodabandeh, M. (2024). Evaluation of analytical methods for stone column bearing capacity. Case Studies in Construction Materials. https://doi.org/10.1016/j.cscm.2024.e02265.
  5. Coventry University. (2019). Understanding the performance of deep mixed column improved soils: A review. ResearchGate. https://www.researchgate.net/publication/337307243.
  6. Ghorbani, M., Khosravi, A., & Noorzad, A. (2021). 2D FEM study of stone columns with basal reinforcement under embankments. Computers and Geotechnics. https://doi.org/10.1016/j.compgeo.2024.106456.
  7. Yao, L., Zhao, S., & Li, C. (2025). Numerical study on optimized T-shaped soil–cement deep mixing columns for embankment support. Frontiers in Built Environment. https://doi.org/10.3389/fbuil.2025.1628946.
  8. Ghazavi, M., & Amiri, M. (2025). Reliability-based design of stone columns using probabilistic methods. International Journal of Geotechnical Engineering. https://doi.org/10.1080/19386362.2025.2530992.
  9. Wang, Z., Zhang, S., & Li, F. (2023). Cement stabilized columns reinforced with carbon nanotubes for enhanced performance. arXiv. https://arxiv.org/abs/2310.05759
  10. Nguyen, L. T., & Chu, M. N. (2022). Optimal design of rigid inclusions and stone columns using multiobjective optimization. Journal of Geotechnical and Geoenvironmental Engineering, 148(9), 04022067. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002820.
  11. Peng, B. C., Sun, J., & Han, J. (2024). Numerical stability analysis of sloped geosynthetic-encased stone columns: Effect of area replacement ratio. Geotextiles and Geomembranes, 52(2), 481-492. https://doi.org/10.1016/j.geotexmem.2023.11.002.
  12. Pourakbar, S. (2023). Deep mixing columns design methods: Diameter 0.5–1.75 m, spacing 1.0–1.5 m. CORE. https://core.ac.uk/download/pdf/322137688.pdf.
  13. Miranda, M., & Fonseca, A. V. (2021). Critical length and area replacement ratio effects on stone column stability. Geotextiles and Geomembranes, 49(3), 735-748. https://doi.org/10.1016/j.geotexmem.2021.01.001.
  14. Inanç Onur, M., & Demir, G. (2022). Laboratory model design for deep soil mixing: Injection pressure, mixing time, dosage influence on UCS. Geotechnical and Geological Engineering, 40(1), 1-15. https://doi.org/10.1007/s10706-021-01869-7.
  15. Abas, H. A., Basack, S., & Abdi, J. (2024). Assessing deep soil mixing for excavation support in Sabkha soils. Arabian Journal for Science and Engineering, 49(2), 1759-1772. https://doi.org/10.1007/s13369-023-08035-7.
  16. Sun, J., Peng, B. C., & Han, J. (2024). Consolidation of high replacement ratio stone column systems. Géotechnique Letters. https://doi.org/10.1680/jgele.24.00030.
  17. Einarsson, S., & Persson, L. (2024). Advantages and disadvantages of DSM versus stone columns in soft soils. (Report No. 2024:01). Chalmers University of Technology.
  18. Han, J. (2015). Recent research and development of ground column technologies. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 46(1), 1-13.
  19. Ramar, S. K., & Latha, G. M. (2024). Effects of geosynthetic encasement on non-uniform stone column performance and settlement behavior. Géotechnique Letters, 14(1), 1-10. https://doi.org/10.1680/jgele.23.00048.
  20. Liu, F., Lin, J., & Han, J. (2023). DEM analysis of load–deformation behavior of floating geosynthetic-encased stone columns. Applied Sciences, 13(11), 6689. https://doi.org/10.3390/app13116689.
  21. Castro, J., & Miranda, M. (2017). Modeling techniques for stone and encased stone columns, critical length and parameter selection. Soil Mechanics and Foundation Engineering, 54(5), 329-340.
  22. Peng, B. C., Han, J., & Sun, J. (2024). Numerical stability analysis of GESCs under embankment conditions. Transportation Geotechnics, 47, 101185. https://doi.org/10.1016/j.trgeo.2024.101185.
  23. Wassie, T. A., & Demir, G. (2023). Behavior of an embankment on stone column-reinforced soft soil (Plaxis-2D analysis). International Journal of Geo-Engineering, 14(1), 1-12. https://doi.org/10.1186/s40703-023-00192-3.
  24. Ghorbani, A., et al. (2021). Embankment deformation over granular columns with reinforcement. Transportation Geotechnics, 31, 100662. https://doi.org/10.1016/j.trgeo.2021.100662.
  25. Tan, X., Han, Z., & Liu, S. (2025). Numerical modeling of geotextile-wrapped stone columns under embankment loads. Computers and Geotechnics, 171, 106041. https://doi.org/10.1016/j.compgeo.2024.106041.
  26. Moradi, P., & Noorzad, A. (2023). DSM columns for settlement mitigation beneath circular storage tank foundations. Journal of Geotechnical and Geoenvironmental Engineering, 149(1), 04022137. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002882.
  27. Abas, H. A., & Al-Kutbe, A. A. (2024). Finite element assessment of DSM walls for excavation support in Sabkha soils. Innovative Infrastructure Solutions, 9(1), 32. https://doi.org/10.1007/s43995-023-00042-0.
  28. Pan, H., Liu, S., & Li, C. (2022). Deep soil mixing to reinforce soft soils adjacent to shield tunnels. Tunnelling and Underground Space Technology, 127, 104595. https://doi.org/10.1016/j.tust.2022.104595.
  29. Amer, M., & El-Kadi, E. (2024). Mass soil mixing field trial for soil improvement & groundwater control in Egypt. ISEC Press. https://isec-society.org/ISEC_PRESS/ISEC_Press_2024/09_Amer-Elkadi.pdf.
  30. Case Study Turkey (Eskisehir). (2019). DSM for hotel foundation in soft soil. ISEC Press. https://isec-society.org/ISEC_PRESS/ISEC_Press_2019/Istanbul2019/docs/A31.pdf.
  31. Selma, B., & Inanc Onur, M. (2024). 3D modeling of geosynthetic encased stone columns in clay embankment conditions. Journal of Geotechnical and Geoenvironmental Engineering. https://doi.org/10.1061/(ASCE)GT.1943-5606.0003031.
  32. Harelimana, V., Han, J., & Basack, S. (2022). Performance of stone columns with geosynthetic reinforcement in extremely soft clay. Geosynthetics International, 29(1), 1-15. https://doi.org/10.1680/jgein.21.00029.
  33. Castro, J., & Miranda, M. (2017). Modeling stone columns: numerical and analytical modeling strategies. Soil Mechanics and Foundation Engineering, 54(5), 329-340. https://doi.org/10.1007/s11204-017-0466-2.
  34. Teshager, D. K., & Demir, G. (2022). Review on finite element modeling practices of stone columns. Journal of Engineering Sciences, 10(1), 1-15. https://doi.org/10.21175/jges.2022.10.1.1.
  35. Tan, X., Han, Z., & Liu, S. (2025). FE modeling of vertically and horizontally reinforced stone columns. Computers and Geotechnics, 171, 106041. https://doi.org/10.1016/j.compgeo.2024.106041.
  36. Saxena, S., & Roy, S. (2022). Suitability analysis of stone column materials using PLAXIS. Journal of the Institution of Engineers (India): Series A, 103(1), 1-10. https://doi.org/10.1007/s40030-022-00627-2.
  37. Fulambarkar, S., & Bhausaheb, A. (2025). Impact of DMM column pattern on ground improvement performance. Geomechanics and Geoengineering. https://doi.org/10.1016/j.geog.2024.10.001.
  38. Abdelbaset, A., & Masry, S. (2023). Parametric study of AR and length effect through numerical consolidation. Computers and Geotechnics, 155, 105213. https://doi.org/10.1016/j.compgeo.2023.105213.
  39. Yuan, B., & Chen, H. (2024). Physics-informed neural networks for 3D Terzaghi consolidation PDEs. arXiv. https://arxiv.org/abs/2401.05759.
  40. Rodríguez-Romero, R., et al. (2023). Hierarchical meta-modeling of CNT/cement injected stone columns. Canadian Geotechnical Journal, 60(2), 143-157. https://doi.org/10.1139/cgj-2022-0268.
  41. Bagheri, R., & Najafi, S. (2023). Variability of stone column refusal criteria and implications for settlement predictions. Journal of Geotechnical Practice, 50(3), 123-145.
  42. El-Shimi, W., Salem, A., & Hassan, M. (2024). Eco-friendly binders in DSM: carbon footprint benchmarking and field trials. Environmental Geotechnology, 12(1), 56-78.
  43. Han, J., Kim, S., & Lee, D. (2021). Instrumentation protocols for validation of soil improvement systems. ASCE Geotechnical Special Publications, 301, 22-35.
  44. Kumbhar, S., & Reddy, M. (2022). Spacing challenges and bulging risk in dense urban installations. Urban Geotechnics, 8(4), 89-102.
  45. Li, X., Wang, Y., & Chen, L. (2024). Effect of binder-moisture interactions in DSM columns installed in high moisture content soft clays. Geotech. Research Letters, 10(2), 45-60.
  46. Mwangi, J., Okello, P., & Mutua, F. (2023). Cost-benefit analysis of DSM vs stone columns in developing country projects. Journal of African Civil Engineering, 15(2), 112-128.
  47. Sharma, P., & Gupta, A. (2023). Spoil management in vibratory stone column installations in saturated clays. International Journal of Environmental Engineering, 7(1), 33-48.
  48. Singh, S., & Park, H. (2022). Lack of performance monitoring in column-based improvement projects. GeoMonitoring Journal, 14(3), 77-90.
  49. Zhu, J., Li, Y., & Zhang, W. (2023). Diagnosis of incomplete column treatment due to shallow layering. Engineering Geology, 98(2), 201-215.
  50. Saride, S. et al. (2024). Effect of area improvement ratio of geopolymer-based DSM columns on swelling-shrinkage behavior. ScienceDirect.
  51. Mach, A., & Wałach, D. (2024). Implementation of integrated life cycle design principles in ground improvement and piling methods. MDPI.
  52. Liu, H., et al. (2024). State-of-the-art review on AI in computational mechanics. SpringerLink.
  53. Saad, A. H., et al. (2023). Systematic review of machine learning in soil improvement using green materials. MDPI.
  54. Terbuch, A. (2022). Quality monitoring in vibro ground improvement using hybrid ML models. Wiley Online Library.
  55. Yuan, B., et al. (2024). Physics-Informed Neural Networks for 3D consolidation PDEs. ScienceDirect.
  56. Rodríguez-Romero, R., et al. (2023). Hierarchical meta-modeling of CNT/cement injected stone columns. Advanced GeoSolutions, Inc.
  57. Zhao, T., et al. (2024). Review of ML methods for predicting geotechnical engineering parameters. ScienceDirect.
  58. Aminpour, M. A., et al. (2022). Machine learning aided Monte Carlo reliability analysis for anisotropic slopes. arXiv.
  59. Luo, D., et al. (2025). AI in concrete lifecycle design, optimization, and performance prediction. Nature.